Refraction

Waves can be Refracted

- 1) Reflection isn't all that happens when a wave meets a boundary. Usually, some of it is refracted too it passes through the boundary and changes direction.
- Waves travel at different speeds in different media.
 E.g. electromagnetic waves, like light, usually travel slower in denser media.

If a wave hits a boundary 'face on', it slows down without changing direction.

But if the wave hits at an angle, this bit **slows down first**...

...while this bit carries on at the same speed until it meets the boundary. The wave changes direction.

When an electromagnetic wave enters a **denser** medium, it bends **towards** the normal. When one enters a **less dense** medium, it bends **away** from the normal.

The Refractive Index is a Ratio of Speeds

The **refractive index** of a medium, *n*, is the **ratio** of the speed of light in a **vacuum** to the speed of light in **that medium**. **Every** transparent material has a refractive index and different materials have **different refractive indices**.

You can Calculate the Refractive Index using Snell's Law

When an **incident ray** travelling in **air** meets a boundary with **another material**, the **angle of refraction** of the ray, r, depends on the **refractive index** of the material and the **angle of incidence**, i.

This is called **Snell's Law**.

refractive index $(n) = \frac{\sin i}{\sin r}$

EXAMPLE: The angle of incidence of a beam of light on a glass block is 65°. The angle of refraction is 35°. What is the refractive index of the block?

$$n = \frac{\sin i}{\sin r} = \frac{\sin 65}{\sin 35} = 1.580... = 1.6$$

You can **rearrange** Snell's Law to find an angle of refraction or incidence, e.g. $r = \sin^{-1}(\frac{\sin i}{n})$.

This page has a high refractive index — it's really slowed me down...

- 1) A wave hits a boundary between two media head on. Describe what happens to the wave.
- 2) A wave hits a boundary between two media at an angle. Describe what happens to the wave.
- 3) A light wave travelling in air hits a transparent material at an angle of 72° to the normal to the boundary. The angle of refraction is 39°. What is the refractive index of the material?
- 4) A light wave hits the surface of the water in a pond at 23° to the normal. The refractive index of the pond water is 1.3. What is the angle of refraction?

Atomic Structure

Atoms are **Made Up** of **Three** Types of **Particle**

- 1) According to the **nuclear model**, the atom is made up of electrons, protons and neutrons.
- 2) The **nucleus** is at the **centre** of the atom. It contains **protons** (which have a **positive** charge) and **neutrons** (which have **no charge**), giving the nucleus an **overall positive charge**. Protons and neutrons are both known as **nucleons**.
- 3) The nucleus is **tiny** but it makes up **most** of the **mass** of the atom. The rest of the atom is mostly **empty space**, containing only the negative **electrons** which orbit **around** the nucleus.

	relative	relative	
	mass	charge	
proton	1	+1	
neutron	1	0	
electron	0.0005	-1	

Atomic Structure can be Represented Using Nuclide Notation

- 1) The **proton number** (or atomic number), **Z**, is the number of **protons** in an atom.
- 2) The **nucleon number** (or mass number), **A**, is the total number of **protons** and **neutrons**.
- 3) An element can be **described** by its **proton** and **nucleon numbers**:

For example, lithium has 4 neutrons and 3 protons, so its symbol is $\frac{7}{3}$ Li.

Isotopes are Different Forms of the Same Element

- 1) Isotopes are atoms with the **same number** of **protons** but a **different number** of **neutrons**.
- 2) This means they have the **same proton number**, but **different nucleon numbers**.
- 3) Many isotopes are **unstable** and give off **radiation** (see next page).

EXAMPLE: Carbon-12 and carbon-14 are two isotopes of carbon.

The radioactive decay of carbon-14 is used in radiocarbon dating to estimate the age of things that are thousands of years old.

8 neutrons, 6 protons (2 extra neutrons)

Radiocarbon dating — what physicists do on Valentine's Day...

- 1) How many protons and neutrons are there in each of the following nuclei?
- a) ²⁴¹₉₅Am
- b) ²³⁹₉₄Pu
- c) 38Sr
- d) ⁶⁰₂₇Co
- e) ²²⁶₈₈Ra

2) What is an isotope of an element?

Nuclear Radiation

If an atom is unstable, it can undergo radioactive decay and give off nuclear radiation. By decaying, a nucleus emits particles or energy, making it more stable.

There are three kinds of nuclear radiation you need to know about:

In **Alpha Decay** (Symbol α), an Alpha Particle is Emitted

- 1) An **alpha particle** is emitted from the **nucleus**. It is made up of two protons and two neutrons.
- 2) As a result, the proton number of the atom that has decayed goes down by 2 and the nucleon number goes down by 4.

EXAMPLE: The alpha decay of radium-226.

 $^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}\alpha$

Proton and nucleon numbers are both conserved

during all forms of radioactive decay:

Nucleon number: 226 = 222 + 4

Proton number: 88 = 86 + 2

In **Beta Decay** (Symbol β), an **Electron** is Emitted

- 1) A **neutron** in the nucleus turns into a **proton** and an **electron**. The electron is emitted from the nucleus and is called a beta particle.
- 2) As a result the **proton number** of the nucleus goes **up by 1**, but the nucleon number doesn't change.

EXAMPLE: The beta decay of radium-228.

 $^{228}_{88}$ Ra $\rightarrow ^{228}_{89}$ Ac $+ ^{0}_{-1}$ β Nucleon number: 228 = 228 + 0

Proton number: 88 = 89 - 1

Gamma Decay (Symbol γ) Emits **Electromagnetic** Radiation

- 1) High-energy electromagnetic radiation, called gamma radiation is **emitted** from the nucleus.
- 2) The number of protons and neutrons in the nucleus stays the same.

EXAMPLE: The gamma decay of iodine-131.

 $^{131}_{53}$ I $\rightarrow ^{131}_{53}$ I + $^{0}_{0}$ γ Proton and nucleon numbers don't change.

You beta learn this radiation stuff — I promise it's not alpha nothing...

- 1) What is an alpha particle made up of?
- 2) Describe what happens during the emission of beta and gamma radiation.
- 3) Complete the following decay equations by filling in any missing radiation symbols, proton numbers or nucleon numbers:

 - a) ${}^{242}_{94}$ Pu $\rightarrow -U + {}^{4}_{2}\alpha$ b) $-K \rightarrow {}^{40}_{20}$ Ca $+ {}^{0}_{-1}\beta$
- c) $^{222}_{86}Rn \rightarrow ^{218}_{84}Po + _{--}$ d) $^{14}_{6}C \rightarrow _{-}^{-}N + ^{0}_{-1}\beta$

Planning an Experiment and Collecting Data

Scientists do Experiments to Answer Questions

You need to plan experiments carefully to make sure you get the best results possible:

- 1) Make a **prediction** or **hypothesis** a testable statement about what you think will happen.
- 2) Identify your variables (see below).
- 3) Think about any risks, and how you can minimise them.
- 4) Select the right **equipment** for the job if you're measuring a time interval in minutes you might use a **stopwatch**, but if it's in milliseconds you may need to get a **computer** to measure the time for you, as your reaction time could interfere with your results.
- 5) Decide what data you need to collect and how you'll do it.
- 6) Write a clear, detailed **method** describing exactly what you're going to do.

You Need to Know What Your Variables Are

A variable is anything that has the **potential to change** in an experiment.

The **independent variable** is the thing **you change** in an experiment.

The **dependent variable** is the thing you **measure** in an experiment.

All the other variables must be kept the same to make it a fair test. These are control variables.

EXAMPLE: An experiment investigates how the height an object is dropped from affects the time it takes to fall. Identify the variables in this experiment.

The **independent variable** is the **height** you drop the object from — it's what you change. The **dependent variable** is the **time** the object takes to fall — it's what you measure. Everything else in the experiment should be **controlled**, so no other variables change. For example, the **same object** should be used throughout the experiment (so its size and mass don't change), the **conditions** in the room you do the experiment in should be constant, and you shouldn't change your measuring **equipment** halfway through.

Repeating an Experiment Lets You Calculate a Mean

Normally, you'll get a slightly different result every time you do an experiment, due to small **random errors** you can't control. E.g. — holding your head in a slightly different place each time you take a measurement from a ruler will cause random errors in the length you read off. You can **reduce the effect** of these random errors on your results by **repeating** your experiment and taking an average, or **mean**, of your results.

To find the mean:

- 1) Add together the results of each repeat.
- 2) Divide this total by the number of repeats you did.

Independent variables — not keen on accepting help...

- 1) A scientist investigates how changing the potential difference across a circuit component affects the current through it. He measures the current three times at each potential difference.
 - a) Identify the independent and dependent variables in this investigation.
 - b) For a potential difference of 4 V, the scientist records currents of 0.13 A, 0.17 A and 0.12 A. Calculate the mean current through the component when the potential difference is 4 V.

Analysing Your Data

You can Present Your Results on a Graph

Graphs are the easiest way to see any patterns or trends in your results.

1) Usually the **independent variable** goes on the **x-axis** (along the bottom) and the **dependent variable** goes on the **y-axis** (up the side). Make sure you **label** both axes **clearly** with the quantity and **units**. Pick a **sensible scale** — both axes should go up in sensible steps, and should spread the data out over the full graph (rather than bunching it up in a corner).

- 4) Draw a **line of best fit** for your results. Around half the data points should be above your line of best fit and half below it. The line could be **straight** or **curved**, depending on your data.
- Identify any anomalous results, like this one — it's way off the general trend, and looks like it was caused by a mistake.
 Ignore anomalous results when drawing your line of best fit.

Graphs Can Show Different Kinds of Correlation

The **correlation** describes the relationship between the variables. Data can show:

POSITIVE CORRELATION:

As one variable increases, the other increases.

NEGATIVE CORRELATION:

As one variable increases, the other decreases.

NO CORRELATION:

No relationship between the variables.

Remember, just because two variables are correlated it doesn't mean a change in one is **causing** a change in the other — there could be a third variable affecting them both.

Anomalouse results — unusual results in the insect breeding program...

1) The table on the right gives the speed of a cyclist as he accelerates from rest. Plot a graph of his speed against time, and draw a line of best fit.

time / s	0.0	2.0	4.0	6.0	8.0	10.0
speed / ms ⁻¹	0.0	0.7	1.8	2.6	3.2	4.2

Conclusions and Uncertainty

Draw Conclusions that Your Results Support

You should draw a conclusion that explains what your data shows.

- 1) Your conclusion should be limited to what you've **actually done** and found out in your experiment. For example, if you've been investigating how the force applied to a spring affects how much it stretches, and have only used forces between 0 and 5 N, you can't claim to know what would happen if you used a force of 10 N, or if you used a different spring.
- 2) You also need to think about how much you can **believe** your conclusion, by evaluating the **quality** of your results (see below). If you can't trust your results, you can't form a **strong conclusion**.

You can Never Measure Anything Exactly

- 1) There will always be **errors** and **uncertainties** in your results caused by lots of different things, including **human error** (e.g. your reaction time). The more errors there are in your results, the **lower the quality** of your data. This will affect the strength of your **conclusion** (see above).
- 2) All measurements will have some uncertainty due to the equipment used. For example, if you measure a length with a ruler, you can only measure it to the nearest millimetre, as that's the **smallest difference** marked on the ruler's scale. If you measure a length with a ruler as 14 mm you can write this as **14 ± 0.5 mm** to show that you could be up to half a millimetre out either way.
- 3) If you have a value without a \pm sign, the number of **significant figures** gives you an estimate of the **uncertainty**. For example, 72 ms⁻¹ has **2 significant figures**, so without any other information you know this value must be 72 \pm **0.5 ms⁻¹** if the value was less than 71.5 ms⁻¹ it would have been rounded to 71 ms⁻¹, if it was greater than 72.5 ms⁻¹ it would have been rounded to 73 ms⁻¹.

Think About How to Improve Your Experiment

You should always think about how your experiment could be improved:

- 1) Did the experiment actually **test** what it was supposed to? Could you make it more **relevant** to the question?
- 2) Was there anything you could have done to prevent some of the **errors** in your results?
- 3) Would different **apparatus** or a different **method** have given you **better results**?

In conclusion, I need a cup of tea...

- 1) A student records how long it takes for a car to stop when the brakes are fully applied. He uses a stopwatch, and gets a measurement of 7.628 ± 0.0005 seconds.
 - a) What is the smallest difference the stopwatch can measure?
 - b) The student says from his result he can accurately report the time taken for the car to stop to 4 significant figures. Is he correct? Explain your answer.